Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioessays ; 44(9): e2200038, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35832014

RESUMO

Lipid droplets (LDs) are ubiquitous, neutral lipid storage organelles that act as hubs of metabolic processes. LDs are structurally unique with a hydrophobic core that mainly consists of neutral lipids, sterol esters, and triglycerides, enclosed within a phospholipid monolayer. Nascent LD formation begins with the accumulation of neutral lipids in the endoplasmic reticulum (ER) bilayer. The ER membrane proteins such as seipin, LDAF1, FIT, and MCTPs are reported to play an important role in the formation of nascent LDs. As the LDs grow, they unmix from the highly charged ER membrane to form mature LDs. LD biogenesis is an exciting, emerging research area, and herein, we discuss the recent progress in our understanding of the formation of eukaryotic nascent LDs. We focus on the role of ER membrane shaping proteins such as reticulons and reticulon-like proteins, membrane lipids, and cytoskeleton proteins such as septin in the formation of nascent LDs.


Assuntos
Gotículas Lipídicas , Proteínas de Membrana , Citoesqueleto/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo
2.
Front Cell Dev Biol ; 9: 735031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869317

RESUMO

Peroxisomes are ubiquitous, single membrane-bound organelles that play a crucial role in lipid metabolism and human health. While peroxisome number is maintained by the division of existing peroxisomes, nascent peroxisomes can be generated from the endoplasmic reticulum (ER) membrane in yeasts. During formation and proliferation, peroxisomes maintain membrane contacts with the ER. In addition to the ER, contacts between peroxisomes and other organelles such as lipid droplets, mitochondria, vacuole, and plasma membrane have been reported. These membrane contact sites (MCS) are dynamic and important for cellular function. This review focuses on the recent developments in peroxisome biogenesis and the functional importance of peroxisomal MCS in yeasts.

3.
Mol Biol Cell ; 32(12): 1147-1157, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33826368

RESUMO

Lipid droplets (LDs) are neutral lipid-containing organelles enclosed in a single monolayer of phospholipids. LD formation begins with the accumulation of neutral lipids within the bilayer of the endoplasmic reticulum (ER) membrane. It is not known how the sites of formation of nascent LDs in the ER membrane are determined. Here we show that multiple C2 domain-containing transmembrane proteins, MCTP1 and MCTP2, are at sites of LD formation in specialized ER subdomains. We show that the transmembrane domain (TMD) of these proteins is similar to a reticulon homology domain. Like reticulons, these proteins tubulate the ER membrane and favor highly curved regions of the ER. Our data indicate that the MCTP TMDs promote LD biogenesis, increasing LD number. MCTPs colocalize with seipin, a protein involved in LD biogenesis, but form more stable microdomains in the ER. The MCTP C2 domains bind charged lipids and regulate LD size, likely by mediating ER-LD contact sites. Together, our data indicate that MCTPs form microdomains within ER tubules that regulate LD biogenesis, size, and ER-LD contacts. Interestingly, MCTP punctae colocalized with other organelles as well, suggesting that these proteins may play a general role in linking tubular ER to organelle contact sites.


Assuntos
Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Animais , Domínios C2 , Células COS , Chlorocebus aethiops , Células HeLa , Humanos
4.
Front Cell Dev Biol ; 7: 92, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214588

RESUMO

All eukaryotic cells contain membrane bound structures called organelles. Each organelle has specific composition and function. Some of the organelles are generated de novo in a cell. The endoplasmic reticulum (ER) is a major contributor of proteins and membranes for most of the organelles. In this mini review, we discuss de novo biogenesis of two such organelles, peroxisomes and lipid droplets (LDs), that are formed in the ER membrane. LDs and peroxisomes are highly conserved ubiquitously present membrane-bound organelles. Both these organelles play vital roles in lipid metabolism and human health. Here, we discuss the current understanding of de novo biogenesis of LDs and peroxisomes, recent advances on how biogenesis of both the organelles might be linked, physical interaction between LDs and peroxisomes and other organelles, and their physiological importance.

6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(5): 654-661, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30731133

RESUMO

Previous studies have shown that the cardiolipin (CL)-deficient yeast mutant, crd1Δ, has decreased levels of acetyl-CoA and decreased activities of the TCA cycle enzymes aconitase and succinate dehydrogenase. These biochemical phenotypes are expected to lead to defective TCA cycle function. In this study, we report that signaling and anaplerotic metabolic pathways that supplement defects in the TCA cycle are essential in crd1Δ mutant cells. The crd1Δ mutant is synthetically lethal with mutants in the TCA cycle, retrograde (RTG) pathway, glyoxylate cycle, and pyruvate carboxylase 1. Glutamate levels were decreased, and the mutant exhibited glutamate auxotrophy. Glyoxylate cycle genes were up-regulated, and the levels of glyoxylate metabolites succinate and citrate were increased in crd1Δ. Import of acetyl-CoA from the cytosol into mitochondria is essential in crd1Δ, as deletion of the carnitine-acetylcarnitine translocase led to lethality in the CL mutant. ß-oxidation was functional in the mutant, and oleate supplementation rescued growth defects. These findings suggest that TCA cycle deficiency caused by the absence of CL necessitates activation of anaplerotic pathways to replenish acetyl-CoA and TCA cycle intermediates. Implications for Barth syndrome, a genetic disorder of CL metabolism, are discussed.


Assuntos
Cardiolipinas/genética , Ciclo do Ácido Cítrico , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Cardiolipinas/metabolismo , Deleção de Genes , Glioxilatos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nat Commun ; 9(1): 2940, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054481

RESUMO

Nascent lipid droplet (LD) formation occurs in the endoplasmic reticulum (ER) membrane but it is not known how sites of biogenesis are determined. We previously identified ER domains in S. cerevisiae containing the reticulon homology domain (RHD) protein Pex30 that are regions where preperoxisomal vesicles (PPVs) form. Here, we show that Pex30 domains are also sites where most nascent LDs form. Mature LDs usually remain associated with Pex30 subdomains, and the same Pex30 subdomain can simultaneously associate with a LD and a PPV or peroxisome. We find that in higher eukaryotes multiple C2 domain containing transmembrane protein (MCTP2) is similar to Pex30: it contains an RHD and resides in ER domains where most nascent LD biogenesis occurs and that often associate with peroxisomes. Together, these findings indicate that most LDs and PPVs form and remain associated with conserved ER subdomains, and suggest a link between LD and peroxisome biogenesis.


Assuntos
Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Biogênese de Organelas , Peroxissomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Deleção de Genes , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Metiltransferases/metabolismo , Mutação , Domínios Proteicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Curr Biol ; 28(6): 915-926.e9, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29526591

RESUMO

Lipid droplets (LDs) store fats and play critical roles in lipid and energy homeostasis. They form between the leaflets of the endoplasmic reticulum (ER) membrane and consist of a neutral lipid core wrapped in a phospholipid monolayer with proteins. Two types of ER-LD architecture are thought to exist and be essential for LD functioning. Maturing LDs either emerge from the ER into the cytoplasm, remaining attached to the ER by a narrow membrane neck, or stay embedded in the ER and are surrounded by ER membrane. Here, we identify a lipid-based mechanism that controls which of these two architectures is favored. Theoretical modeling indicated that the intrinsic molecular curvatures of ER phospholipids can determine whether LDs remain embedded in or emerge from the ER; lipids with negative intrinsic curvature such as diacylglycerol (DAG) and phosphatidylethanolamine favor LD embedding, while those with positive intrinsic curvature, like lysolipids, support LD emergence. This prediction was verified by altering the lipid composition of the ER in S. cerevisiae using mutants and the addition of exogenous lipids. We found that fat-storage-inducing transmembrane protein 2 (FIT2) homologs become enriched at sites of LD generation when biogenesis is induced. DAG accumulates at sites of LD biogenesis, and FIT2 proteins may promote LD emergence from the ER by reducing DAG levels at these sites. Altogether, our findings suggest that cells regulate LD integration in the ER by modulating ER lipid composition, particularly at sites of LD biogenesis and that FIT2 proteins may play a central role in this process.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Glicoproteínas/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Simulação por Computador , Diglicerídeos/metabolismo , Diglicerídeos/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Glicoproteínas/fisiologia , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Proteínas Associadas a Gotículas Lipídicas/fisiologia , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
9.
Proc Natl Acad Sci U S A ; 114(46): E9863-E9872, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29093165

RESUMO

Mitochondria constantly divide and fuse. Homotypic fusion of the outer mitochondrial membranes requires the mitofusin (MFN) proteins, a family of dynamin-like GTPases. MFNs are anchored in the membrane by transmembrane (TM) segments, exposing both the N-terminal GTPase domain and the C-terminal tail (CT) to the cytosol. This arrangement is very similar to that of the atlastin (ATL) GTPases, which mediate fusion of endoplasmic reticulum (ER) membranes. We engineered various MFN-ATL chimeras to gain mechanistic insight into MFN-mediated fusion. When MFN1 is localized to the ER by TM swapping with ATL1, it functions in the maintenance of ER morphology and fusion. In addition, an amphipathic helix in the CT of MFN1 is exchangeable with that of ATL1 and critical for mitochondrial localization of MFN1. Furthermore, hydrophobic residues N-terminal to the TM segments of MFN1 play a role in membrane targeting but not fusion. Our findings provide important insight into MFN-mediated membrane fusion.


Assuntos
Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Microscopia de Fluorescência , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência , Leveduras
10.
Nat Cell Biol ; 19(8): 876-882, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28714972

RESUMO

Understanding organelle biogenesis is a central focus of cell biology. Whereas some are generated from existing organelles, others can be generated de novo. Most de novo organelle biogenesis occurs in the endoplasmic reticulum (ER). Here, we review the role of the ER in the generation of peroxisomes, lipid droplets, and omegasomes, which are platforms for autophagosome production, and discuss how ER subdomains with specific protein and lipid composition form and promote organelle biogenesis.


Assuntos
Autofagossomos/fisiologia , Retículo Endoplasmático/fisiologia , Gotículas Lipídicas/fisiologia , Biogênese de Organelas , Peroxissomos/fisiologia , Animais , Autofagossomos/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Peroxissomos/metabolismo , Transdução de Sinais
11.
J Biol Chem ; 292(3): 1092-1102, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27941023

RESUMO

Cardiolipin (CL), the signature phospholipid of mitochondrial membranes, plays an important role in mitochondrial processes and bioenergetics. CL is synthesized de novo and undergoes remodeling in the mitochondrial membranes. Perturbation of CL remodeling leads to the rare X-linked genetic disorder Barth syndrome, which shows disparities in clinical presentation. To uncover biochemical modifiers that exacerbate CL deficiency, we carried out a synthetic genetic array screen to identify synthetic lethal interactions with the yeast CL synthase mutant crd1Δ. The results indicated that crd1Δ is synthetically lethal with mutants in pyruvate dehydrogenase (PDH), which catalyzes the conversion of pyruvate to acetyl-CoA. Acetyl-CoA levels were decreased in the mutant. The synthesis of acetyl-CoA depends primarily on the PDH-catalyzed conversion of pyruvate in the mitochondria and on the PDH bypass in the cytosol, which synthesizes acetyl-CoA from acetate. Consistent with perturbation of the PDH bypass, crd1Δ cells grown on acetate as the sole carbon source exhibited decreased growth, decreased acetyl-CoA, and increased intracellular acetate levels resulting from decreased acetyl-CoA synthetase activity. PDH mRNA and protein levels were up-regulated in crd1Δ cells, but PDH enzyme activity was not increased, indicating that PDH up-regulation did not compensate for defects in the PDH bypass. These findings demonstrate for the first time that CL is required for acetyl-CoA synthesis, which is decreased in CL-deficient cells as a result of a defective PDH bypass pathway.


Assuntos
Acetilcoenzima A/biossíntese , Cardiolipinas/metabolismo , Coenzima A Ligases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/genética , Cardiolipinas/genética , Coenzima A Ligases/genética , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
J Cell Biol ; 215(4): 515-529, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27872254

RESUMO

Saccharomyces cerevisiae contains three conserved reticulon and reticulon-like proteins that help maintain ER structure by stabilizing high membrane curvature in ER tubules and the edges of ER sheets. A mutant lacking all three proteins has dramatically altered ER morphology. We found that ER shape is restored in this mutant when Pex30p or its homologue Pex31p is overexpressed. Pex30p can tubulate membranes both in cells and when reconstituted into proteoliposomes, indicating that Pex30p is a novel ER-shaping protein. In contrast to the reticulons, Pex30p is low abundance, and we found that it localizes to subdomains in the ER. We show that these ER subdomains are the sites where most preperoxisomal vesicles (PPVs) are generated. In addition, overproduction or deletion of Pex30p or Pex31p alters the size, shape, and number of PPVs. Our findings suggest that Pex30p and Pex31p help shape and generate regions of the ER where PPV biogenesis occurs.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Biogênese de Organelas , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo , Retículo Endoplasmático/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Mutação/genética , Saccharomyces cerevisiae/ultraestrutura , Vesículas Transportadoras/ultraestrutura
13.
FEMS Yeast Res ; 16(3)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26926495

RESUMO

Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes. CL deficiency leads to defects in mitochondrial function. Using a targeted synthetic lethality screen to identify defects that exacerbate CL deficiency, we determined that deletion of mitochondrial morphology genes in cells lacking CL leads to severe growth defects. We show that ER membrane proteins Get1p and Get2p are required for maintaining normal levels of CL. We propose that these proteins regulate the level of CL by maintaining wild type-like tubular mitochondrial morphology. The genetic interactions observed in this study identify novel physiological modifiers that are required for maintenance of CL levels and mitochondrial morphology.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Cardiolipinas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Deleção de Genes , Testes Genéticos , Proteínas de Membrana/genética , Viabilidade Microbiana , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
Methods Mol Biol ; 1033: 21-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23996168

RESUMO

Thin-layer chromatography (TLC) is a technique that has been routinely used for the separation and identification of lipids. Here we describe an optimized protocol for the steady state labeling, separation, and quantification of yeast phospholipids using 1-D TLC.


Assuntos
Cromatografia em Camada Fina/métodos , Fosfolipídeos/química , Fracionamento Químico/métodos , Fosfolipídeos/análise , Coloração e Rotulagem/métodos
15.
J Biol Chem ; 287(21): 17589-17597, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22433850

RESUMO

The two non-bilayer forming mitochondrial phospholipids cardiolipin (CL) and phosphatidylethanolamine (PE) play crucial roles in maintaining mitochondrial morphology. We have shown previously that CL and PE have overlapping functions, and the loss of both is synthetically lethal. Because the lack of CL does not lead to defects in the mitochondrial network in Saccharomyces cerevisiae, we hypothesized that PE may compensate for CL in the maintenance of mitochondrial tubular morphology and fusion. To test this hypothesis, we constructed a conditional mutant crd1Δpsd1Δ containing null alleles of CRD1 (CL synthase) and PSD1 (mitochondrial phosphatidylserine decarboxylase), in which the wild type CRD1 gene is expressed on a plasmid under control of the TET(OFF) promoter. In the presence of tetracycline, the mutant exhibited highly fragmented mitochondria, loss of mitochondrial DNA, and reduced membrane potential, characteristic of fusion mutants. Deletion of DNM1, required for mitochondrial fission, restored the tubular mitochondrial morphology. Loss of CL and mitochondrial PE led to reduced levels of small and large isoforms of the fusion protein Mgm1p, possibly accounting for the fusion defect. Taken together, these data demonstrate for the first time in vivo that CL and mitochondrial PE are required to maintain tubular mitochondrial morphology and have overlapping functions in mitochondrial fusion.


Assuntos
Cardiolipinas/biossíntese , Fusão de Membrana/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfatidiletanolaminas/biossíntese , Saccharomyces cerevisiae/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Cardiolipinas/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Fosfatidiletanolaminas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
16.
Curr Biol ; 19(24): 2133-9, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-19962311

RESUMO

The biogenesis of mitochondria requires the import of a large number of proteins from the cytosol [1, 2]. Although numerous studies have defined the proteinaceous machineries that mediate mitochondrial protein sorting, little is known about the role of lipids in mitochondrial protein import. Cardiolipin, the signature phospholipid of the mitochondrial inner membrane [3-5], affects the stability of many inner-membrane protein complexes [6-12]. Perturbation of cardiolipin metabolism leads to the X-linked cardioskeletal myopathy Barth syndrome [13-18]. We report that cardiolipin affects the preprotein translocases of the mitochondrial outer membrane. Cardiolipin mutants genetically interact with mutants of outer-membrane translocases. Mitochondria from cardiolipin yeast mutants, as well as Barth syndrome patients, are impaired in the biogenesis of outer-membrane proteins. Our findings reveal a new role for cardiolipin in protein sorting at the mitochondrial outer membrane and bear implications for the pathogenesis of Barth syndrome.


Assuntos
Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Autorradiografia , Síndrome de Barth/fisiopatologia , Cardiolipinas/genética , Linhagem Celular , Eletroforese , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae
17.
Biochim Biophys Acta ; 1793(1): 212-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18725250

RESUMO

Cardiolipin (CL), the signature lipid of mitochondria, plays a critical role in mitochondrial function and biogenesis. The availability of yeast mutants blocked in CL synthesis has facilitated studies of the biological role of this lipid. Perturbation of CL synthesis leads to growth defects not only during respiratory growth but also under conditions in which respiration is not essential. CL was shown to play a role in mitochondrial protein import, cell wall biogenesis, aging and apoptosis, ceramide synthesis, and translation of electron transport chain components. The genetic disorder Barth syndrome (BTHS) is caused by mutations in the tafazzin gene resulting in decreased total CL levels, accumulation of monolysocardiolipin (MLCL), and decreased unsaturated fatty acyl species of CL. The variation in clinical presentation of BTHS indicates that other physiological factors play a significant role in modifying the phenotype resulting from tafazzin deficiency. Elucidating the functions of CL is expected to shed light on the role of this important lipid in BTHS and other disorders of mitochondrial dysfunction.


Assuntos
Cardiolipinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Aciltransferases , Apoptose , Senescência Celular , Transporte de Elétrons/fisiologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...